

Infant, Junior School and Camp Education

Progression in Calculation Policy

This document explains how to teach calculation with understanding, and not just as a process that is to be remembered. The Written Calculation Policy clarifies progression in calculation with examples that are 'mathematically transparent', in other words the way the calculation works is clear and supports the development of mathematical concepts.

The Aims of the Curriculum:

The National Curriculum for Mathematics aims to ensure that all children:
$>$ Become fluent in the fundamentals of mathematics, including through varied and frequent practise with increasingly complex problems over time, so that children develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
> Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
$>$ Can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Aims of the Policy:

$>$ To ensure consistency and progression in our approach to calculation and enable a smooth transition between year groups and phases.
> To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
> To ensure that children can use these methods accurately with confidence and understanding.
> To ensure children understand important concepts and make connections within mathematics.
> To ensure children show high levels of fluency in performing written and mental calculations.
> To ensure that children are ready for the next stage of learning and have been given strong foundations in mental methods, the use of practical equipment, allowed to explore jottings in a range of forms and then to move onto more formal recording using a strong knowledge of place value, number lines labelled or blank, partitioning before eventually using compact written methods.
> To ensure that children are competent in fluency, reasoning and problem solving and can make informed and appropriate choices about the methods they wish to use (mental or written) to solve mathematical problems efficiently and effectively.

Introduction

The policy is set out in operations, addition, subtraction, multiplication and division. Within each specific area there is a progression of skills, knowledge and layout for written methods. The calculation strategies which will be used will reflect this ideology - moving from concrete to pictorial and then abstract recording leading to more formal written methods. Mental methods and strategies will work in partnership with these methods.

It is important to always show the links between operations and not teach them in isolation or without showing, in practical problem solving activities and across all mathematical topics, how these operations can be applied.

It is important that staff always use correct mathematical language and encourage this from every pupil. This will take place in class discussions as well as through oral and written feedback, next steps and target setting.

We have chosen not to identify which year group should use which method because we wish staff and children to have the freedom to take the next steps on their mathematical journey when they are ready to do so and if the policy is followed, there should not be a problem with progression as children move through the school.

All staff have the responsibility to make sure that children have the depth of knowledge and experiences required to move onto the next stage of their development rather than pushing them on too quickly. This leads to misconceptions and poor mathematical foundations and eventually, in later years, children will not be able to make the required progress.

Ultimately we aim to enable children to make informed choices about the methods they use both mental and written that are the most efficient and this includes recognised compact methods.

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

	Vocabulary	Concrete	Pictorial	Abstract
$\stackrel{C}{0}$		Number track - use a counter to physically count back $4-3=$	Number track - draw the concrete method - count back in ones Marked number line - draw the jumps - count back in ones or chunks	Empty number line - ENL - count back (in ones)
$\frac{0}{4}$		Bead String - count the correct number of beads then slide/count the beads to physically remove the subtracting number Step 1 $4-3=$ Step 2 $4-3=$		

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

	Vocabulary	Concrete	Pictorial	Abstract			
			Rods and dots - where exchanging of the tens rod needs to occur, cross this out and exchange into 10 dots 'ones'. Then cross out the number being subtracted and re-draw the reminding rods and dots to provide the tens and ones. Step 1				
			$\begin{aligned} & 65-37 \\ & \\|\\|\\|! \end{aligned}$				
			Step 2				
			$65-37$				
			Step 3				
			$65-37=28$				

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

	Vocabulary abstract arrange array base ten bead strings calculation combine concrete counters double equal equal groups exchange groups of hundreds lots of multilink multiply numicon number facts number line number track ones / units* partition pictorial place value PPW - part-part-whole product record repeated addition tens	Concrete	Pictorial	Abstract
		Repeated addition - use Numicon and counters. $3 \times 4=$	Repeated addition - draw the concrete method.	Record multiplication alongside repeated addition
		Repeated addition - use multilink Bead string - group the beads into 4's to calculate $\begin{aligned} & 3 \times 4= \\ & 4+4+4 \end{aligned}$	Repeated addition - make equal jumps along the number line	Repeated addition - make equal jumps along an empty number line (ENL) $3 \times 4=$

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

$\frac{-}{0}$.$\frac{1}{4}$$\frac{0}{0}$$\frac{.1}{ \pm}$$\frac{1}{2}$	Vocabulary	Concrete Base ten - 2-digit x 1-digit. Partition the 2-digit number and make groups of that number T 10		Pictorial Base ten - draw the concrete method using a place value grid. Step 1 T		Abstract		
				Partitioning - partition the 2-digit number into tens and ones and either -use known facts -number line				
			$21 \times 3=$			Step 2	$21 \times 3=$	$\begin{gathered} 21 \times 3= \\ 21 \\ 20 \end{gathered}$
				\mathbf{T} 10 $\square \square$ 0 $\square \square$ 0 $\square \square$ 0 6 3	$21 \times 3=$	$\begin{aligned} & 20 \times 3=60 \\ & 1 \times 3=3 \end{aligned}$ so $60+3=63$		

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

	Vocabulary	Concrete	Pictorial	Abstract
				Step 6
				$\begin{array}{r} 124 \\ \times \quad 26 \\ \hline 744 \\ 2480 \end{array}$
				Step 7
				$\begin{array}{r} 124 \\ \times 26 \\ \hline 744 \\ 2480 \\ \hline 3224 \end{array}$

IJS \& CE Progression in Calculation Policy 2019

	Vocabulary	Concrete	Pictorial	Abstract
$\frac{\stackrel{C}{0}}{\frac{n}{8}}$	abstract arrange array base ten calculation concrete counters divide division equal equal groups exchange grouping half halve hundreds long division multilink numicon number facts number line number track ones/units* partition pictorial place value PPW - part-part-whole product record remainder repeated subtraction	Sharing - share counters into equal groups. Step 1 20 counters shared into 4 equal goones Step 2 Sharing - share multilink into equal groups and arrange them in rows (beginnings of arrays) Step 1 Step 2 Break the multilisk intos 4 equal pieces.	Sharing - draw the concrete method. Share number into equal groups	Sharing - record division using correct symbol.

IJS \& CE Progression in Calculation Policy 2019

IJS \& CE Progression in Calculation Policy 2019

	Phase 1		Phase 2		Phase 3	
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Mental +/-	- add and subtract one-digit and two-digit numbers to 20 , including zero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: TO +O , $\mathrm{TO}+\mathrm{T}, \mathrm{TO}+\mathrm{TO}$ and $\mathrm{O}+\mathrm{O}+\mathrm{O}$ - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	-add and subtract numbers mentally, including: HTO+O, HTO+T and $\mathrm{HTO}+\mathrm{H}$		-add and subtract numbers mentally with increasingly large numbers	-perform mental calculations, including with mixed operations and large numbers
Written +/-			- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	-add and subtract whole numbers with more than 4 digits, including using formal written methods	
Mental (x/ \div)		-calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division ($(\div$) and equals ($=$) signs -show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental methods	- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations	-multiply and divide numbers mentally drawing upon known facts -multiply and divide whole numbers and those involving decimals by 10,100 and 1000	-perform mental calculations, including with mixed operations and large numbers
Written (x / \div)			- Progress to formal written methods calculations as above	-multiply two-digit and threedigit numbers by a one-digit number using formal written layout	-multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers -divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	-multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication -divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context -divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to context

IJS \& CE Progression in Calculation Policy 2019

