# Infant, Junior School and Camp Education 

## Progression in Fractions Policy

What is a unit fraction?
A unit fraction is any fraction with 1 as its numerator (top number), and a whole number for the denominator (bottom number).


What are the parts of a fraction?
A fraction has three parts. They are:
The numerator which is the number above the bar.
The denominator which is the number below the bar.
The vinculum which is the bar separating the two numbers.

What does it mean to simplify fractions?
This just means that we use the lowest possible numbers when we work out our fractions. We do this to keep things simple - it stops us from ending up with fractions made up of huge numbers (which can be confusing). Simplifying fractions is another area which highlights the importance of children mastering their times tables.

## What is a non-unit fraction?

A non-unit fraction is a fraction with a number greater than one as its numerator (top number) and a whole number for the denominator (bottom number).

## What is a fraction?

$$
\begin{aligned}
& \text { Fractions are used to represent } \\
& \text { smaller pieces (or parts) of a whole. } \\
& \text { The parts might make up one thing, or } \\
& \text { more than one thing. Either way, } \\
& \text { altogether, they make up what's }
\end{aligned}
$$

mixed
number

## What are equivalent fractions?

Equivalent fractions are two or more fractions that are all equal. A fraction is a part of a whole: the denominator (bottom number) represents how many equal parts the whole is split into; the numerator (top number) represents the amount of those parts.


## What is a proper fraction?

This means that the fraction is below 1 or a whole. The denominator is bigger than the numerator.


[^0]Fraction


## EYFS Early Learning Goals Fractions

How can we progress with fractions?
Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.


Children learn how to share practically using objects. This may happen at snack time or during provision time. Children will check it is fair and that they all have the same amount (early division).

Children will have experiences dealing with 'fractions' in a practical way. Language used will be age appropriate (e.g one half, halves, equal, two parts, quarter, four parts as well as share, whole, split)
Adults will use the language in context when appropriate to expose children to such terms.
At this stage, children will use practical objects to develop their knowledge and awareness. They may use pictorial prompts but likely in a practical way.

## Year 1 Fractions

## How can we progress with fractions?

Recognise, find and name a half as one of two equal parts of an object, shape or quantity.


Recognise, find and name a quarter as one of four equal parts an object, shape or quantity.


## Year 2 Fractions

How can we progress with fractions?
Recognise, find and name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.


Write simple fractions and recognise the equivalence of $2 / 4$ and $\mathbf{1 / 2}$

## Concrete



Pictorial


I have $\frac{1}{2}$ a pie You have $\frac{2}{4}$ of a pie

Abstract


6

## Year 3 Fractions

## How can we progress with fractions?

Count up and down in tenths: recognise that tenths arise from dividing an object into ten equal parts and in dividing one-digit numbers or quantities by ten.


Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions and use fractions as numbers.


Recognise and show, using diagrams, equivalent fractions with small denominators.

two halves $\frac{2}{2}$



## Abstract

Sam says that two quarters is the same as one half.
Is he correct?
How do you know?

Add and subtract fractions with the same denominator
Conerote


$$
\begin{aligned}
& \text { Abstract } \\
& \frac{5}{7}+\frac{1}{7}=\frac{6}{7} \\
& \frac{5}{8}-\frac{2}{8}=\frac{3}{8}
\end{aligned}
$$

Compare and order unit fractions with the same denominator

## Concrete



Pictorial


Abstract
$\frac{2}{8} \frac{3}{8} \frac{5}{8} \frac{7}{8}$

## Year 4 Fractions

How can we progress with fractions?
Count up and down in hundredths: recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10 .

$\mathbf{1}$ hundredth $=0.01=\frac{1}{100}$


$$
\begin{aligned}
& \text { Abstract } \\
& \frac{1}{100} \text { of } 60=0.6 \\
& \text { because } 60 \div 100=0.6 \\
& \frac{1}{100} \text { of } 70=0.7 \\
& \text { because } 70 \div 100=0.7
\end{aligned}
$$

Recognise and write decimal equivalences for $3 / 100,1 / 2,1 / 4,7 / 100$ and 3/4

## Concrete

Pictorial


## Abstract

$$
\begin{aligned}
& \frac{1}{2}=0.5 \\
& \frac{1}{4}=0.25 \\
& \frac{3}{4}=0.75
\end{aligned}
$$



Recognise and write decimal equivalents of any number of tenths or hundredths.
Concrete

$\frac{1}{10}$ of the chocolate $=0.1$
Pictorial

0.6
six tenths


$$
\begin{gathered}
\text { Abstract } \\
\frac{1}{10}=0.1 \\
\frac{3}{10}=0.3 \\
\frac{5}{10}=\frac{1}{2}=0.5 \\
\frac{8}{100}=0.08
\end{gathered}
$$

Recognise and show, using diagrams, families of common equivalents
Concrete


Pictorial


Abstract
$\frac{2}{3}=\frac{4}{6}$
$\frac{3}{5}=\frac{6}{10}$
$\frac{2}{12}=\frac{1}{6}$

Add and subtract fractions with the same denominator.


Abstract
Sam eats $\frac{2}{7}$ of a whole pizza.
How much does he have left?
Lucy and Ben both eat
three eighths of a cake.

Solve problems involving increasingly harder fractions to calculate quantities, and fractionsto divide quantities, including non-unit fractions where the answer is a whole number.

Concrete


Pictorial


$$
\begin{aligned}
& \text { Abstract } \\
& \frac{2}{3} \text { of } £ 18 \\
& £ 18 \div 3=£ 6 \\
& £ 6 \times 2=£ 12
\end{aligned}
$$

Solve simple measure and money problems involving fractions and decimals to two decimal places

## Concrete



Pictorial


Abstract $100 \mathrm{~cm}=1 \mathrm{~m}$
$50 \mathrm{~cm}=\frac{1}{2}=0.5 \mathrm{~m}$
$25 \mathrm{~cm}=\frac{1}{4}=0.25 \mathrm{~m}$
$10 \mathrm{~cm}=\frac{1}{10}=0.1 \mathrm{~m}$
$30 \mathrm{~cm}=\frac{3}{10}=0.3 \mathrm{~m}$


## Year 5 Fractions

How can we progress with fractions?
Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.


$$
\frac{6}{10}=\frac{60}{100}
$$

$$
\begin{aligned}
& \text { Abstract } \\
& \frac{3}{5}=\frac{6}{10}=\frac{60}{100} \\
& \frac{3}{4}=\frac{75}{100} \\
& \frac{1}{5}=\frac{2}{10}=\frac{20}{100}
\end{aligned}
$$

Compare and order fractions whose denominators are all multiples of the same number.


Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements $>1$ as a mixed number.



Abstract

$$
\frac{7}{2}=3 \frac{1}{2}
$$

because $7 \div 2=3$ with 1 half left over

$$
2 \frac{1}{3}=\frac{7}{3}
$$

because $2 \times 3=6$
with 1 third left to add

Add and subtract fractions with the same denominators and denominators that are multiples of the same numbers.
Concrete Pictorial


| $\quad \frac{8}{20}+\frac{5}{20}$ | $=\frac{13}{20}$ |  |
| :--- | :--- | :--- | :--- |
| So, | $\frac{2}{5}+\frac{1}{4}$ | $=\frac{13}{20}$ |




So,
$\frac{8}{20}-\frac{5}{20} \quad=\quad \frac{3}{20}$


Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.


Pictorial

$4 \frac{2}{4}$ altogether

## Abstract

Multiply a proper fraction by a whole number:

$$
\frac{3}{4} \times 6=\frac{18}{4}
$$

Change to a mixed number

$$
\frac{18}{4}=4 \frac{2}{4}
$$

Recognise and use altogether thousandths and relate them to tenths, hundredths and decimal equivalents.

Concrete
Decimal numbers


Pictorial


## Abstract

67.153

How many thousandths does this number have?

How many thousandths do you need to add to it to make it 67.16?


Recognise \% symbol and understand the meaning: write \% as a fraction, decimal and percentage


## Year 6 Fractions

How can we progress with fractions?
Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions.
Concrete



$$
\begin{gathered}
\text { Abstract } \\
1 \frac{1}{2}+\frac{1}{3}=1 \frac{5}{6} \\
\text { because } 1 \frac{1}{2}=\frac{3}{2} \\
\frac{3}{2}=\frac{9}{6} \text { and } \frac{1}{3}=\frac{2}{6} \\
\text { so } \frac{9}{6}+\frac{2}{6}=\frac{11}{6}=1 \frac{5}{6}
\end{gathered}
$$

Compare and order fractions including fractions $>1$

Concrete


Pictorial


Abstract
Which is greater?

$$
\frac{2}{8}<\frac{6}{16}
$$

Ordering from smallest to largest by using equivalent fractions:

$$
\begin{aligned}
& \frac{5}{12}, \frac{2}{3}, \frac{5}{6} \\
& \frac{5}{12}, \frac{8}{12}, \frac{10}{12}
\end{aligned}
$$

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.

## Concrete



Pictorial


Abstract


Multiply simple pairs of proper fractions, writing the answer in its simplest form


Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.

Concrete


Which would you prefer $75 \%$ or $\frac{\mathbf{3}}{\mathbf{8}}$ of a pie?

$75 \%$

## Abstract

John scored $\frac{40}{80}$ in his spelling test and Hannah scored 40\%. Who scored more?

John $=\frac{40}{80}=50 \%$
Hannah $=40 \%$

One paving slab is 0.3 m long and another is $\frac{1}{4}$ of a metre. Which is longer?
$\frac{1}{4} \quad=0.25 m$
0.3 m is larger than 0.25 m

Divide proper fractions by whole numbers.


Pictorial

$\frac{1}{2} \div 3=\frac{1}{6}$

Abstract

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$



Associate fractions with division and calculate decimal fraction equivalents.

## Concrete


quarters

Pictorial
3 slices of pie 'out of' 8

$\frac{3}{8}$

## Abstract

$\frac{3}{8}$
3 'out of' 8 is the same as 3 'divided by' 8

$$
\begin{gathered}
3 \div 8=0.375 \\
\text { So } \frac{3}{8}=0.375
\end{gathered}
$$





[^0]:    Proper

